INCLUSION BODY MYOSITIS and INCLUSION BODY MYOPATHY.

Bill Tillier
Calgary, Alberta
February, 2012.
IBM classification.

- Inclusion Body Myositis and Inclusion Body Myopathy are classified as types of muscular dystrophy.
- Muscular dystrophy:
 - Idiopathic inflammatory myositis (IIM) disorders:
 - Dermatomyositis (DM)
 - Polymyositis (PM)
 - Inclusion body myositis and inclusion body myopathies.
 - Idiopathic means the cause is unknown.
- There are similarities between PM & IBM (and also big differences) but DM seems to be quite different.
- People often confuse MD with a different disorder; MS: multiple sclerosis, a disorder affecting the nerves.
Called **myositis** to emphasize its characteristic muscle inflammation.

Sporadic inclusion body myositis (sIBM) is the most common form of IBM disease.

Sporadic means it just shows up in people (it’s not inherited, it is considered an acquired illness).

sIBM is a relatively rare disorder, its incidence is about 15 per 1,000,000 in the overall population, but rising to over 50 per 1,000,000 in people over 50 (doi: 10.1136/jnnp.2007.138891).

Statistically, slightly more males are affected than females.
General information 2.

- sIBM is **age-related**, as we get older, it gets more and more common. Age of onset (when you first notice it) is about 60 but this varies widely (20% of cases appear in the forties).

- Symptoms emerge slowly, over **months or years**.

- The **causes** of sIBM are currently unknown.

- They have tried various **treatments** for sIBM, but none has so far been shown to slow the progression.
sIBM is a progressive disorder of skeletal muscle cells: as more and more cells are affected and die off, the muscles shrunk and become progressively weaker.

The rate of progression in patients varies widely. Progression tends to be faster in men & in patients with later onset.

The progression rate varies in different muscle groups: lower leg muscles show the greatest decline, followed by forearm muscles and then upper leg muscles.

“characteristic distribution of affected muscles: finger flexors, quadriceps, lower leg muscles with relative sparing of shoulder and hip abductors and neck muscles” doi:10.1093/brain/awr258

The following diagram outlines the weakness seen.
Pattern of weakness seen in sIBM.

 - Although there is a common pattern of weakness, it is important to note that there are wide variations between patients: everyone is affected in slightly different ways, to different degrees & at different rates
 - (doi:10.1212/01.wnl.0000192128.13875.1e).

← The quadriceps muscles
sIBM symptoms.

- The quadriceps muscles in the front of the thighs are often affected first (and are often used for biopsy). This weakness is felt in climbing stairs, in getting up from chairs, etc. It often leads to frequent falls.

- "Toe drop" (the leg muscles don’t raise the toe high enough in taking a step) commonly causes tripping.

- Usually, early and severe weakness of the muscles in the arm occurs and loss of wrist strength, finger dexterity and weak grip strength (making a fist) are common early symptoms or prominent symptoms.

- sIBM does not appear to affect heart muscle or smooth muscle (the bowels).
sIBM features.

- sIBM is not considered a fatal disorder, however, complications can be fatal (doi: 10.1093/brain/awr258).
- The most common complications are respiratory dysfunction, aspiration, dysphagia and cachexia.
 - sIBM may affect the muscles used in respiration leading to low air volumes and paradoxical breathing. Respiratory function should be checked in sIBM.
 - Weak swallowing (dysphagia) often causes choking and food to go into the lungs (aspiration), resulting in a type of pneumonia which is often fatal in older people.
 - Cachexia: general physical wasting & malnutrition.
“Relentless progression” leads to major or “total disability:” the mean/median time to wheelchair use is usually 14 to 16 years after symptom onset. (doi: 10.1093/brain/awr258)

Little can be done to change the progression of weakness, however, much can be done to watch for complications, to identify them quickly and to manage them effectively.

Early on, awareness and prevention of falls is critical.

Once a wheelchair is necessary, the complications of being in a wheelchair need to be addressed:
 - for example, avoidance of skin breakdown
Causes of sIBM.

- Currently, no cause of IBM has been identified. This makes developing a treatment more difficult.
- sIBM has two major features: one having to do with the immune system attacking and killing muscle cells (autoimmune aspect), the other, a deterioration of the proteins in muscle cells (degenerative aspect). The two aspects appear to occur in parallel in muscle cells.
 - It is not clear which aspect comes first, if one causes the other, or if some other factor causes both aspects.
- It is likely that a combination of features will be discovered as causing sIBM, involving both immune and degenerative aspects, environmental and genetic factors and their interaction with each other.
Muscle disorders are generally difficult to diagnose.

sIBM is often initially misdiagnosed as another muscle disorder called polymyositis.

Usually a specialist (neurologist or rheumatologist) is required to diagnose the disorder.

Most patients say that diagnosis took a long time and was a frustrating process.

Many say that medications were suggested or tried (generally, no medication is indicated for IBM).

These methods and tests are usually used in diagnosis:
Diagnosis of sIBM.

1. **Clinical signs:** the symptoms the doctor can see when you are examined. The doctor looks for the clinical signs of sIBM; a **characteristic pattern** of muscle weakness.

2. **Blood test** is done for creatine kinase (CK) (also known as "phosphocreatine kinase," or CPK), an enzyme in the blood showing muscle damage. CK is at most about 10X normal, although this may vary.

3. **Electromyography (EMG):** Electrical studies of the muscle done with a computer (an electromyograph) will display abnormalities in these disorders.

4. **Muscle Biopsy:** Surgical removal of a piece of muscle and its subsequent study in the laboratory.
Theories of sIBM 1.

- One current theory is that an undiscovered virus triggers sIBM, setting in motion an ongoing immune response which attacks and kills the muscle cells.

- IBM was named for the observation that “inclusions” (inclusion bodies = clumps) and strands of abnormal proteins form in the muscle cells affected.
 - Based upon this, another major theory is that abnormal proteins somehow form in the muscle cells causing sIBM and then triggering the immune response that is seen.

- A third theory is that some sort of virus triggers sIBM, persisting in the body and maintaining abnormalities.
Theories of sIBM 2.

- Research continues although, at a very methodical, incremental rate.

- The role of abnormal proteins in IBM has been questioned by Greenberg (doi:10.1136/bmj.b2680). He showed how inappropriate citation of papers has created a distortion of the evidence supporting the belief that these proteins are central in causing IBM.

- The available evidence does not form a coherent picture of how sIBM might develop. More discoveries and a new theory of sIBM will have to emerge before this impasse is resolved (and thus leading the way to new therapeutic strategies).
A new treatment strategy.

- A protein called myostatin inhibits muscle growth. It acts to keep muscle growth within a normal range; otherwise muscle growth could go unchecked.

- Another protein called follistatin controls myostatin. Follistatin inhibits myostatin: it blocks the inhibitor, thereby allowing more muscle growth to take place.

- Researchers are trying to inhibit myostatin in order to increase muscle growth. It is hoped that these increases in muscle growth will help compensate for muscle damage in people who have various types of muscle diseases, thereby ultimately increasing function until a more fundamental cure can be found.

- See: http://www.ibmmyositis.com/Genetherapy.pdf
Genetics of sIBM.

- sIBM is not an inherited disorder: the disorder is not passed on to the children of patients with sIBM.

- sIBM has been linked with a group of genes related to the immune system that are commonly seen in Caucasians from Northern European ancestry.

- This group of genes is called the Major Histocompatibility Complex (MHC) and is found on chromosome #6.

- There is a subset of these MHC genes called the 8.1 ancestral haplotype. A further subset of this group called the Human Leukocyte Antigen (HLA) genes have been linked to patients with sIBM (and fIBM).
Genetic predispositions in sIBM?

- Chemicals controlled by HLA genes play an important role in regulating immune responses to certain environmental factors.
- People with certain groups of HLA genes are predisposed to develop autoimmune disorders.
- sIBM is associated with HLA-DR3 genes in about 70% of patients (PMid:15623710).
- If you happen to have this particular group of genes, you are likely somehow predisposed to develop IBM.
- Conclusion: It appears that some combination of genes interact with each other and with environmental variables to increase the likelihood of sIBM developing in a given individual.
Familial Inclusion Body Myositis (fIBM)

- fIBM occurs in two or more siblings in a family in the same generation (but it is not passed on to children).
- The symptoms and features of fIBM are very similar to those seen in the sporadic form of IBM.
- fIBM is also linked with the same genes as sIBM, raising the possibility that fIBM and sIBM share similar inherited predispositions.
- The familial occurrence of such a rare disorder highlights the importance of genetic predisposition in the causation of sIBM (doi: 10.1002/mus.20766).
- Familial and hereditary forms of IBM existing along with sporadic IBM is challenging to understand – how are they related? What does this say about causes?
Sporadic versus hereditary forms.

- Sporadic inclusion body myositis (sIBM) features inflammation in the muscle and deterioration. It is not directly linked to a genetic mutation (not inherited).

- Hereditary inclusion body myopathy (hIBM):
 - “Myopathy” is used here as this type does not show muscle inflammation (*myo*: muscle, *pathy*: disease).
 - Hereditary is used to indicate that it is inherited.

- The rest of this presentation will focus on the hereditary forms which are exceedingly rare (in some forms, only a few hundred known cases in the world).

- See slide 28 for a general conclusion.
Sporadic versus hereditary forms.

- Today, several different hereditary inclusion body myopathies, are recognized. These different forms can display different symptoms but all share similar underlying structural features in common.

- Various hereditary types follow either autosomal recessive or autosomal dominant patterns of inheritance.

- As these disorders were discovered, a complex series of names were assigned to them before it was recognized that some shared commonalities or were the same.
Various names for the recessive form.

- As the autosomal recessive form was initially described, several different names were given to it:
 - Hereditary Inclusion Body Myopathy (hIBM2).
 - Inclusion Body Myopathy 2 (IBM2);
 - Autosomal recessive Inclusion Body Myopathy (AR-hIBM);
 - Quadriceps-sparing Inclusion Body Myopathy (QSM);
 - Nonaka distal myopathy with rimmed vacuoles;
 - Distal myopathy with rimmed vacuoles (DMRV).
- This is the most common type of inherited IBM.
Various autosomal dominant forms.

- **Autosomal dominant forms:**
 - **IBM 3:** was called “AD myopathy with congenital joint contractures, ophthalmoplegia and rimmed vacuoles” (linked to mutations in a gene on chromosome 17).
 - **AD-IBM:** Autosomal dominant inclusion body myopathy.
 - **IBMPFD:** IBM associated with Paget’s disease and frontotemporal dementia (linked to a gene on chromosome 9, located at 9p13-p12).
Features of hIBM 2.

- Argov & Yarom (doi:10.1016/0022-510X(84)90053-4) described the disorder in Jews of Persian (Iranian) origin.

- The onset of this disorder usually occurs after the age of 20 but before the middle of the fourth decade. Proximal and distal muscle weakness and wasting of the upper and lower limbs are progressive and result in severe incapacitation within 10 to 20 years.

- Sparing of the quadriceps muscles, even in advanced stages of the disorder, is a feature unique to this inherited form of inclusion body myopathy.

- hIBM 2 shares several features with sIBM, including “muscle holes” and protein inclusions (but with NO inflammation or quadriceps muscle involvement).
Mapping to a specific gene location.

- hIBM 2 was traced to a gene on an autosome: chromosome #9 (9p12-p11) (PMid:9888997, 11528398).

- All patients of Middle Eastern descent were found to share a single homozygous missense mutation in the **GNE gene**. This gene produces GNE protein. (GNE stands for: UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase).

- GNE is an **enzyme** involved in the production of **sialic acid**: a chemical involved in the management of glycoproteins and glycolipids in the cell.

- To date, more than **40** different mutations in the GNE gene have been reported that lead to hIBM 2.
Who is affected?

- hlIBM 2 is a very rare disorder, affecting about 500 people worldwide. The disorder predominantly affects Iranian Jews, who have a 5 to 10 percent chance of carrying the hlIBM 2 (GNE) gene mutation.

- Argov et al. (2003) concluded that this mutation first appeared about 1,300 years ago and today, is not limited to those of Jewish descent.

- hlIBM 2 has also been seen in some Japanese families (first described by Dr. Nonaka in 1981) as well as in culturally diverse families and in various parts of the world. doi:/10.1016/0022-510X(81)90067-8
Autosomal recessive disorders.

- A mutation of the GNE gene on one of the #9 pair of autosomal chromosomes from each parent is required to cause the disorder. People with only one abnormal gene in the pair will be carriers, but since the gene is recessive they do not exhibit the disorder.

- To develop symptoms, recessive traits require that both chromosomes in the pair (one received from mom and the other from dad) carry the mutation.

- A child inheriting 1 mutated gene will be a carrier, a child receiving 2 mutated genes will have the disorder.
Mutations plus other factors?

- GNE mutations have been found in some people who never show symptoms, showing that other factors must play a role in the expression of the disorder.

- These factors also seem to be important in the clinical expression of hIBM 2 in all patients; although the gene defect is present from conception, symptoms may not appear until the 30s or 40s.

- Researchers are struggling to discover what these factors may be (doi:10.1002/mus.20766).

- Many genetic conditions show interactions with environmental factors that may speed or slow their expression (the development of symptoms).
Conclusion.

- Inclusion body myositis and myopathy are very complex disorders of the skeletal muscle.
 - It is not clear what causes the sporadic form.
 - The mutations behind the inherited forms are being described but possible interacting environmental factors remain to be discovered.

- These can be frustrating disorders to diagnose and all previous attempted treatments have failed.

- Although the slow loss of mobility and arm function is very frustrating, patients must be encouraged to adapt and “make the best of things.”
Some abbreviations used.

- Sporadic inclusion body *myositis* (sIBM).
- Familial Inclusion Body Myositis (fIBM)
- Hereditary inclusion body *myopathy* (hIBM).
- Polymyositis (PM)
- Muscular dystrophy (MD)
- Idiopathic inflammatory myositis (IIM)
- myo = muscle; pathy = disease; itis = inflammation.
References.

- To find a reference, enter the doi number or the PMid into a search engine.

References.

